Co to jest słowo główne: definicja, przykłady, zasady. Jak szybko wyodrębnić pierwiastki kwadratowe

Czas to uporządkować metody ekstrakcji korzeni. Opierają się one na własnościach pierwiastków, w szczególności na równości, która obowiązuje dla każdej liczby nieujemnej b.

Poniżej przyjrzymy się głównym metodom wydobywania korzeni jeden po drugim.

Zacznijmy od najprostszego przypadku - wyciągania pierwiastków z liczb naturalnych za pomocą tabeli kwadratów, tabeli kostek itp.

Jeśli tabele kwadratów, sześcianów itp. Jeśli nie masz go pod ręką, logiczne jest zastosowanie metody wyodrębniania pierwiastka, która polega na rozłożeniu liczby pierwiastkowej na czynniki pierwsze.

Warto szczególnie wspomnieć, co jest możliwe dla pierwiastków o wykładnikach nieparzystych.

Na koniec rozważmy metodę, która pozwala nam sekwencyjnie znajdować cyfry wartości pierwiastkowej.

Zacznijmy.

Korzystanie z tabeli kwadratów, tabeli kostek itp.

W najprostszych przypadkach tabele kwadratów, kostek itp. pozwalają na wyodrębnienie pierwiastków. Co to za tabele?

Tabela kwadratów liczb całkowitych od 0 do 99 włącznie (pokazana poniżej) składa się z dwóch stref. Pierwsza strefa tabeli zlokalizowana jest na szarym tle i wybierając konkretny wiersz oraz konkretną kolumnę, pozwala na ułożenie liczby od 0 do 99. Na przykład wybierzmy wiersz składający się z 8 dziesiątek i kolumnę zawierającą 3 jednostki, w ten sposób ustaliliśmy liczbę 83. Druga strefa zajmuje resztę stołu. Każda komórka znajduje się na przecięciu określonego wiersza i określonej kolumny i zawiera kwadrat odpowiedniej liczby od 0 do 99. Na przecięciu wybranego przez nas rzędu 8 dziesiątek i kolumny 3 jedności znajduje się komórka z liczbą 6889, która jest kwadratem liczby 83.


Tablice kostek, tablice czwartych potęg liczb od 0 do 99 itd. są podobne do tablicy kwadratów, tyle że zawierają kostki, czwarte potęgi itp. w drugiej strefie. odpowiednie liczby.

Tablice kwadratów, sześcianów, czwartych potęg itp. pozwalają wyodrębnić pierwiastki kwadratowe, pierwiastki sześcienne, pierwiastki czwarte itp. odpowiednio na podstawie liczb w tych tabelach. Wyjaśnijmy zasadę ich stosowania podczas wydobywania korzeni.

Powiedzmy, że musimy wyodrębnić n-ty pierwiastek z liczby a, podczas gdy liczba a jest zawarta w tabeli n-tych potęg. Korzystając z tej tabeli, znajdujemy liczbę b taką, że a=b n. Następnie dlatego liczba b będzie pożądanym pierwiastkiem n-tego stopnia.

Jako przykład pokażmy, jak użyć tabeli kostek do wyodrębnienia pierwiastka sześciennego z 19 683. W tabeli kostek znajdujemy liczbę 19 683, z niej dowiadujemy się, że ta liczba jest sześcianem liczby 27, dlatego też .


Jest oczywiste, że tablice n-tych potęg są bardzo wygodne do wyodrębniania pierwiastków. Często jednak nie są one pod ręką, a ich skompilowanie zajmuje trochę czasu. Ponadto często konieczne jest wyodrębnienie pierwiastków z liczb, które nie są zawarte w odpowiednich tabelach. W takich przypadkach należy zastosować inne metody ekstrakcji korzeni.

Rozkładanie liczby pierwiastkowej na czynniki pierwsze

Dość wygodnym sposobem wyodrębnienia pierwiastka z liczby naturalnej (jeśli oczywiście zostanie wyodrębniony pierwiastek) jest rozłożenie liczby pierwiastkowej na czynniki pierwsze. Jego chodzi o to: potem dość łatwo jest przedstawić to jako potęgę o pożądanym wykładniku, co pozwala uzyskać wartość pierwiastka. Wyjaśnijmy tę kwestię.

Weźmy n-ty pierwiastek liczby naturalnej a i jego wartość będzie równa b. W tym przypadku prawdziwa jest równość a=bn. Liczbę b, jak każdą liczbę naturalną, można przedstawić jako iloczyn wszystkich jej czynników pierwszych p 1 , p 2 , …, p m w postaci p 1 ·p 2 ·…·p m , oraz w tym przypadku liczby pierwiastkowej a jest reprezentowane jako (p 1 ·p 2 ·…·p m) n . Ponieważ rozkład liczby na czynniki pierwsze jest jednoznaczny, rozkład pierwiastka liczby a na czynniki pierwsze będzie miał postać (p 1 ·p 2 ·…·p m) n, co pozwala obliczyć wartość pierwiastka Jak.

Należy zauważyć, że jeśli rozkładu liczby a na czynniki pierwsze nie można przedstawić w postaci (p 1 ·p 2 ·…·p m) n, to n-ty pierwiastek takiej liczby a nie jest wyodrębniony całkowicie.

Rozwiążmy to, rozwiązując przykłady.

Przykład.

Weź pierwiastek kwadratowy ze 144.

Rozwiązanie.

Jeśli spojrzysz na tabelę kwadratów podaną w poprzednim akapicie, wyraźnie zobaczysz, że 144 = 12 2, z czego jasno wynika, że ​​pierwiastek kwadratowy z 144 jest równy 12.

Jednak w świetle tego punktu interesuje nas sposób wyodrębnienia pierwiastka poprzez rozkład pierwiastka liczby 144 na czynniki pierwsze. Przyjrzyjmy się temu rozwiązaniu.

Rozłóżmy się 144 do czynników pierwszych:

Oznacza to, że 144=2,2,2,2,3,3. Na podstawie powstałego rozkładu można przeprowadzić następujące przekształcenia: 144=2·2·2·2·3·3=(2,2) 2,3 2 =(2,2,3) 2 =12 2. Stąd, .

Korzystając z właściwości stopnia i właściwości pierwiastków, rozwiązanie można sformułować nieco inaczej: .

Odpowiedź:

Aby skonsolidować materiał, rozważ rozwiązania dwóch kolejnych przykładów.

Przykład.

Oblicz wartość pierwiastka.

Rozwiązanie.

Rozkład na czynniki pierwsze rodnika 243 ma postać 243=3 5 . Zatem, .

Odpowiedź:

Przykład.

Czy wartość pierwiastkowa jest liczbą całkowitą?

Rozwiązanie.

Aby odpowiedzieć na to pytanie, rozłóżmy liczbę pierwiastkową na czynniki pierwsze i zobaczmy, czy można ją przedstawić w postaci sześcianu liczby całkowitej.

Mamy 285 768=2 3 ·3 6 ·7 2. Wynikowego rozwinięcia nie można przedstawić w postaci sześcianu liczby całkowitej, ponieważ potęga czynnika pierwszego 7 nie jest wielokrotnością trzech. Dlatego nie można całkowicie wyodrębnić pierwiastka sześciennego z 285 768.

Odpowiedź:

NIE.

Wyodrębnianie pierwiastków z liczb ułamkowych

Czas dowiedzieć się, jak wyodrębnić pierwiastek z liczby ułamkowej. Niech rodnik ułamkowy zostanie zapisany jako p/q. Zgodnie z właściwością pierwiastka ilorazu prawdziwa jest następująca równość. Z tej równości wynika zasada wyodrębniania pierwiastka ułamka zwykłego: Pierwiastek ułamka jest równy ilorazowi pierwiastka licznika podzielonego przez pierwiastek mianownika.

Spójrzmy na przykład wyodrębnienia pierwiastka z ułamka.

Przykład.

Jaki jest pierwiastek kwadratowy ułamka zwykłego 25/169?

Rozwiązanie.

Korzystając z tabeli kwadratów, stwierdzamy, że pierwiastek kwadratowy licznika ułamka pierwotnego jest równy 5, a pierwiastek kwadratowy mianownika jest równy 13. Następnie . Na tym kończy się ekstrakcja pierwiastka frakcji wspólnej 25/169.

Odpowiedź:

Pierwiastek ułamka dziesiętnego lub liczby mieszanej wyodrębnia się po zastąpieniu liczb pierwiastkowych ułamkami zwykłymi.

Przykład.

Weź pierwiastek sześcienny ułamka dziesiętnego 474,552.

Rozwiązanie.

Wyobraźmy sobie pierwotny ułamek dziesiętny jako ułamek zwykły: 474,552=474552/1000. Następnie . Pozostaje wyodrębnić pierwiastki sześcienne znajdujące się w liczniku i mianowniku powstałego ułamka. Ponieważ 474 552=2·2·2·3·3·3·13·13·13=(2 3 13) 3 =78 3 i 1 000 = 10 3, wtedy I . Pozostaje tylko dokończyć obliczenia .

Odpowiedź:

.

Biorąc pierwiastek z liczby ujemnej

Warto zastanowić się nad wyodrębnianiem pierwiastków z liczb ujemnych. Badając pierwiastki, powiedzieliśmy, że jeśli wykładnik pierwiastkowy jest liczbą nieparzystą, wówczas pod znakiem pierwiastka może znajdować się liczba ujemna. Nadaliśmy tym wpisom następujące znaczenie: dla liczby ujemnej −a i nieparzystego wykładnika pierwiastka 2 n−1, . Ta równość daje zasada wyodrębniania pierwiastków nieparzystych z liczb ujemnych: aby wyodrębnić pierwiastek z liczby ujemnej, musisz wziąć pierwiastek z przeciwnej liczby dodatniej i umieścić znak minus przed wynikiem.

Spójrzmy na przykładowe rozwiązanie.

Przykład.

Znajdź wartość pierwiastka.

Rozwiązanie.

Przekształćmy oryginalne wyrażenie tak, aby pod pierwiastkiem znajdowała się liczba dodatnia: . Teraz zamień liczbę mieszaną na ułamek zwykły: . Stosujemy regułę wyodrębniania pierwiastka ułamka zwykłego: . Pozostaje obliczyć pierwiastki w liczniku i mianowniku powstałego ułamka: .

Oto krótkie podsumowanie rozwiązania: .

Odpowiedź:

.

Bitowe określenie wartości pierwiastkowej

W ogólnym przypadku pod pierwiastkiem znajduje się liczba, której przy użyciu technik omówionych powyżej nie można przedstawić jako n-tą potęgę dowolnej liczby. Ale w tym przypadku trzeba znać znaczenie danego pierwiastka, przynajmniej do pewnego znaku. W takim przypadku, aby wyodrębnić pierwiastek, możesz użyć algorytmu, który pozwala sekwencyjnie uzyskać wystarczającą liczbę wartości cyfr żądanej liczby.

Pierwszym krokiem tego algorytmu jest sprawdzenie, jaki jest najbardziej znaczący bit wartości pierwiastkowej. W tym celu liczby 0, 10, 100, ... są kolejno podnoszone do potęgi n, aż do momentu, gdy liczba przekroczy liczbę pierwiastkową. Następnie liczba, którą podnieśliśmy do potęgi n na poprzednim etapie, wskaże odpowiednią najbardziej znaczącą cyfrę.

Rozważmy na przykład ten krok algorytmu podczas wyodrębniania pierwiastka kwadratowego z pięciu. Weź liczby 0, 10, 100, ... i podnieś je do kwadratu, aż otrzymamy liczbę większą niż 5. Mamy 0 2 = 0<5 , 10 2 =100>5, co oznacza, że ​​najbardziej znaczącą cyfrą będzie cyfra jedności. Wartość tego bitu, jak i niższych, zostanie odnaleziona w kolejnych krokach algorytmu ekstrakcji pierwiastka.

Wszystkie kolejne kroki algorytmu mają na celu sekwencyjne doprecyzowanie wartości pierwiastka poprzez znalezienie wartości kolejnych bitów pożądanej wartości pierwiastka, zaczynając od najwyższej i przechodząc do najniższych. Przykładowo wartość pierwiastka w pierwszym kroku okazuje się wynosić 2, w drugim – 2,2, w trzecim – 2,23 i tak dalej 2,236067977…. Opiszmy, jak znaleźć wartości cyfr.

Cyfry można znaleźć, przeszukując ich możliwe wartości 0, 1, 2, ..., 9. W tym przypadku n-te potęgi odpowiednich liczb są obliczane równolegle i porównywane z liczbą pierwiastkową. Jeżeli na pewnym etapie wartość stopnia przekroczy liczbę pierwiastkową, wówczas uznaje się, że wartość cyfry odpowiadająca poprzedniej wartości zostaje znaleziona i następuje przejście do kolejnego kroku algorytmu ekstrakcji pierwiastka; jeżeli tak się nie stanie, wówczas wartość tej cyfry wynosi 9.

Wyjaśnijmy te punkty na tym samym przykładzie wyodrębnienia pierwiastka kwadratowego z pięciu.

Najpierw znajdujemy wartość cyfry jedności. Będziemy przechodzić przez wartości 0, 1, 2, ..., 9, obliczając odpowiednio 0 2, 1 2, ..., 9 2, aż otrzymamy wartość większą niż pierwiastek 5. Wszystkie te obliczenia wygodnie jest przedstawić w formie tabeli:

Zatem wartość cyfry jedności wynosi 2 (ponieważ 2 2<5 , а 2 3 >5). Przejdźmy do znalezienia wartości miejsca dziesiątego. W tym przypadku podniesiemy liczby 2,0, 2,1, 2,2, ..., 2,9 do kwadratu, porównując uzyskane wartości z rodnikiem 5:

Od 2.2 2<5 , а 2,3 2 >5, wówczas wartość miejsca dziesiątego wynosi 2. Możesz przystąpić do znajdowania wartości miejsca setnego:

W ten sposób znaleziono kolejną wartość pierwiastka z pięciu, która wynosi 2,23. Możesz więc nadal znajdować wartości: 2,236, 2,2360, 2,23606, 2,236067, … .

Aby utrwalić materiał, przeanalizujemy ekstrakcję pierwiastka z dokładnością do setnych, stosując rozważany algorytm.

Najpierw określamy najbardziej znaczącą cyfrę. Aby to zrobić, dzielimy liczby 0, 10, 100 itd. dopóki nie otrzymamy liczby większej niż 2 151 186. Mamy 0 3 = 0<2 151,186 , 10 3 =1 000<2151,186 , 100 3 =1 000 000>2 151,186, więc najbardziej znaczącą cyfrą jest cyfra dziesiątek.

Ustalmy jego wartość.

Od 10 3<2 151,186 , а 20 3 >2 151,186, wówczas wartość miejsca dziesiątek wynosi 1. Przejdźmy do jednostek.

Zatem wartość cyfry jedności wynosi 2. Przejdźmy do dziesiątek.

Ponieważ nawet 12,9 3 jest mniejsze niż pierwiastek 2 151,186, wówczas wartość miejsca dziesiątego wynosi 9. Pozostaje wykonać ostatni krok algorytmu, który da nam wartość pierwiastka z wymaganą dokładnością.

Na tym etapie wartość pierwiastka ustala się z dokładnością do setnych: .

Podsumowując ten artykuł, chciałbym powiedzieć, że istnieje wiele innych sposobów ekstrakcji korzeni. Ale w przypadku większości zadań wystarczą te, które przestudiowaliśmy powyżej.

Bibliografia.

  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: podręcznik dla klasy 8. instytucje edukacyjne.
  • Kołmogorow A.N., Abramow A.M., Dudnitsyn Yu.P. i inne Algebra i początki analizy: Podręcznik dla klas 10 - 11 szkół ogólnokształcących.
  • Gusiew V.A., Mordkovich A.G. Matematyka (podręcznik dla rozpoczynających naukę w technikach).

Zachowanie Twojej prywatności jest dla nas ważne. Z tego powodu opracowaliśmy Politykę prywatności, która opisuje, w jaki sposób wykorzystujemy i przechowujemy Twoje dane. Zapoznaj się z naszymi praktykami dotyczącymi prywatności i daj nam znać, jeśli masz jakiekolwiek pytania.

Gromadzenie i wykorzystywanie danych osobowych

Dane osobowe to dane, które można wykorzystać do identyfikacji konkretnej osoby lub skontaktowania się z nią.

Możesz zostać poproszony o podanie swoich danych osobowych w dowolnym momencie kontaktu z nami.

Poniżej znajduje się kilka przykładów rodzajów danych osobowych, które możemy gromadzić i sposobu, w jaki możemy je wykorzystywać.

Jakie dane osobowe zbieramy:

  • Kiedy składasz wniosek na stronie, możemy zbierać różne informacje, w tym Twoje imię i nazwisko, numer telefonu, adres e-mail itp.

Jak wykorzystujemy Twoje dane osobowe:

  • Gromadzone przez nas dane osobowe pozwalają nam kontaktować się z Tobą w sprawie wyjątkowych ofert, promocji i innych wydarzeń oraz nadchodzących wydarzeń.
  • Od czasu do czasu możemy wykorzystywać Twoje dane osobowe do wysyłania ważnych powiadomień i komunikatów.
  • Możemy również wykorzystywać dane osobowe do celów wewnętrznych, takich jak przeprowadzanie audytów, analiza danych i różnych badań w celu ulepszenia świadczonych przez nas usług i przedstawienia rekomendacji dotyczących naszych usług.
  • Jeśli bierzesz udział w losowaniu nagród, konkursie lub podobnej promocji, możemy wykorzystać podane przez Ciebie informacje w celu administrowania takimi programami.

Ujawnianie informacji osobom trzecim

Nie udostępniamy otrzymanych od Państwa informacji osobom trzecim.

Wyjątki:

  • Jeżeli jest to konieczne – zgodnie z przepisami prawa, procedurą sądową, w postępowaniu sądowym i/lub na podstawie publicznych żądań lub wniosków organów rządowych na terytorium Federacji Rosyjskiej – do ujawnienia Twoich danych osobowych. Możemy również ujawnić informacje o Tobie, jeśli uznamy, że takie ujawnienie jest konieczne lub odpowiednie ze względów bezpieczeństwa, egzekwowania prawa lub innych celów ważnych dla społeczeństwa.
  • W przypadku reorganizacji, fuzji lub sprzedaży możemy przekazać zebrane dane osobowe odpowiedniej następczej stronie trzeciej.

Ochrona danych osobowych

Podejmujemy środki ostrożności – w tym administracyjne, techniczne i fizyczne – aby chronić Twoje dane osobowe przed utratą, kradzieżą i niewłaściwym wykorzystaniem, a także nieuprawnionym dostępem, ujawnieniem, zmianą i zniszczeniem.

Szanowanie Twojej prywatności na poziomie firmy

Aby zapewnić bezpieczeństwo Twoich danych osobowych, przekazujemy naszym pracownikom standardy dotyczące prywatności i bezpieczeństwa oraz rygorystycznie egzekwujemy praktyki dotyczące prywatności.

Fakt 1.
\(\bullet\) Weźmy liczbę nieujemną \(a\) (czyli \(a\geqslant 0\) ). Następnie (arytmetyka) pierwiastek kwadratowy z liczby \(a\) nazywa się taką liczbę nieujemną \(b\) , po podniesieniu do kwadratu otrzymujemy liczbę \(a\) : \[\sqrt a=b\quad \text(tak samo jak )\quad a=b^2\] Z definicji wynika, że \(a\geqslant 0, b\geqslant 0\). Ograniczenia te są ważnym warunkiem istnienia pierwiastka kwadratowego i należy o nich pamiętać!
Przypomnijmy, że każda liczba podniesiona do kwadratu daje wynik nieujemny. Oznacza to, że \(100^2=10000\geqslant 0\) i \((-100)^2=10000\geqslant 0\) .
\(\bullet\) Ile wynosi \(\sqrt(25)\)? Wiemy, że \(5^2=25\) i \((-5)^2=25\) . Ponieważ z definicji musimy znaleźć liczbę nieujemną, wówczas \(-5\) nie jest odpowiednie, dlatego \(\sqrt(25)=5\) (ponieważ \(25=5^2\) ).
Znalezienie wartości \(\sqrt a\) nazywa się pierwiastkiem kwadratowym z liczby \(a\) , a liczbę \(a\) nazywa się wyrażeniem radykalnym.
\(\bullet\) Na podstawie definicji wyrażenie \(\sqrt(-25)\), \(\sqrt(-4)\), itp. nie ma sensu.

Fakt 2.
Do szybkich obliczeń przyda się poznanie tablicy kwadratów liczb naturalnych od \(1\) do \(20\) : \[\begin(array)(|ll|) \hline 1^2=1 & \quad11^2=121 \\ 2^2=4 & \quad12^2=144\\ 3^2=9 & \quad13 ^2=169\\ 4^2=16 & \quad14^2=196\\ 5^2=25 & \quad15^2=225\\ 6^2=36 & \quad16^2=256\\ 7^ 2=49 & \quad17^2=289\\ 8^2=64 & \quad18^2=324\\ 9^2=81 & \quad19^2=361\\ 10^2=100& \quad20^2= 400\\ \hline \end(tablica)\]

Fakt 3.
Jakie operacje można wykonać na pierwiastkach kwadratowych?
\(\pocisk\) Suma lub różnica pierwiastków kwadratowych NIE JEST RÓWNA pierwiastkowi kwadratowemu z sumy lub różnicy \[\sqrt a\pm\sqrt b\ne \sqrt(a\pm b)\] Tak więc, jeśli chcesz obliczyć na przykład \(\sqrt(25)+\sqrt(49)\) , to początkowo musisz znaleźć wartości \(\sqrt(25)\) i \(\ sqrt(49)\ ), a następnie złóż je. Stąd, \[\sqrt(25)+\sqrt(49)=5+7=12\] Jeśli przy dodawaniu \(\sqrt a+\sqrt b\) nie można znaleźć wartości \(\sqrt a\) lub \(\sqrt b\) to takie wyrażenie nie jest dalej przekształcane i pozostaje takie jakie jest. Na przykład w sumie \(\sqrt 2+ \sqrt (49)\) możemy znaleźć \(\sqrt(49)\) is \(7\) , ale \(\sqrt 2\) nie można przekształcić w w każdym razie, dlatego \(\sqrt 2+\sqrt(49)=\sqrt 2+7\). Niestety, wyrażenia tego nie da się już bardziej uprościć\(\bullet\) Iloczyn/iloraz pierwiastków kwadratowych jest równy pierwiastkowi kwadratowemu iloczynu/ilorazu, czyli \[\sqrt a\cdot \sqrt b=\sqrt(ab)\quad \text(s)\quad \sqrt a:\sqrt b=\sqrt(a:b)\] (pod warunkiem, że obie strony równości mają sens)
Przykład: \(\sqrt(32)\cdot \sqrt 2=\sqrt(32\cdot 2)=\sqrt(64)=8\); \(\sqrt(768):\sqrt3=\sqrt(768:3)=\sqrt(256)=16\); \(\sqrt((-25)\cdot (-64))=\sqrt(25\cdot 64)=\sqrt(25)\cdot \sqrt(64)= 5\cdot 8=40\). \(\bullet\) Korzystając z tych właściwości, wygodnie jest znaleźć pierwiastki kwadratowe dużych liczb poprzez ich rozkład na czynniki.
Spójrzmy na przykład. Znajdźmy \(\sqrt(44100)\) . Ponieważ \(44100:100=441\) , to \(44100=100\cdot 441\) . Zgodnie z kryterium podzielności liczba \(441\) jest podzielna przez \(9\) (ponieważ suma jej cyfr wynosi 9, a jest podzielna przez 9), zatem \(441:9=49\), to znaczy \(441=9\ cdot 49\) .
W ten sposób otrzymaliśmy: \[\sqrt(44100)=\sqrt(9\cdot 49\cdot 100)= \sqrt9\cdot \sqrt(49)\cdot \sqrt(100)=3\cdot 7\cdot 10=210\] Spójrzmy na inny przykład: \[\sqrt(\dfrac(32\cdot 294)(27))= \sqrt(\dfrac(16\cdot 2\cdot 3\cdot 49\cdot 2)(9\cdot 3))= \sqrt( \ dfrac(16\cdot4\cdot49)(9))=\dfrac(\sqrt(16)\cdot \sqrt4 \cdot \sqrt(49))(\sqrt9)=\dfrac(4\cdot 2\cdot 7)3 =\dfrac(56)3\]
\(\bullet\) Pokażmy, jak wprowadzać liczby pod pierwiastkiem kwadratowym na przykładzie wyrażenia \(5\sqrt2\) (krótka notacja wyrażenia \(5\cdot \sqrt2\)). Ponieważ \(5=\sqrt(25)\) , to \ Pamiętaj też, że np.
1) \(\sqrt2+3\sqrt2=4\sqrt2\) ,
2) \(5\sqrt3-\sqrt3=4\sqrt3\)
3) \(\sqrt a+\sqrt a=2\sqrt a\) .

Dlaczego? Wyjaśnijmy to na przykładzie 1). Jak już rozumiesz, nie możemy w jakiś sposób przekształcić liczby \(\sqrt2\). Wyobraźmy sobie, że \(\sqrt2\) jest pewną liczbą \(a\) . W związku z tym wyrażenie \(\sqrt2+3\sqrt2\) to nic innego jak \(a+3a\) (jedna liczba \(a\) plus trzy kolejne takie same liczby \(a\)). I wiemy, że to jest równe czterem takim liczbom \(a\) , czyli \(4\sqrt2\) .

Fakt 4.
\(\bullet\) Często mówią „nie można wyodrębnić pierwiastka”, gdy nie można pozbyć się znaku \(\sqrt () \ \) pierwiastka (radykalnego) podczas znajdowania wartości liczby . Na przykład możesz wziąć pierwiastek liczby \(16\) ponieważ \(16=4^2\) , a zatem \(\sqrt(16)=4\) . Nie da się jednak wyodrębnić pierwiastka z liczby \(3\), to znaczy znaleźć \(\sqrt3\), ponieważ nie ma liczby, którą podniesienie do kwadratu dałoby \(3\) .
Takie liczby (lub wyrażenia zawierające takie liczby) są irracjonalne. Na przykład liczby \(\sqrt3, \ 1+\sqrt2, \ \sqrt(15)\) i tak dalej. są irracjonalne.
Wymierne są także liczby \(\pi\) (liczba „pi”, w przybliżeniu równa \(3,14\)), \(e\) (ta liczba nazywana jest liczbą Eulera, jest w przybliżeniu równa \(2,7 \)) itp.
\(\bullet\) Należy pamiętać, że każda liczba będzie albo wymierna, albo niewymierna. I razem wszystkie liczby wymierne i wszystkie niewymierne tworzą zbiór zwany zbiór liczb rzeczywistych. Zbiór ten jest oznaczony literą \(\mathbb(R)\) .
Oznacza to, że wszystkie liczby, które obecnie znamy, nazywane są liczbami rzeczywistymi.

Fakt 5.
\(\bullet\) Moduł liczby rzeczywistej \(a\) jest liczbą nieujemną \(|a|\) równą odległości od punktu \(a\) do \(0\) na prawdziwa linia. Na przykład \(|3|\) i \(|-3|\) są równe 3, ponieważ odległości od punktów \(3\) i \(-3\) do \(0\) to takie same i równe \(3 \) .
\(\bullet\) Jeśli \(a\) jest liczbą nieujemną, to \(|a|=a\) .
Przykład: \(|5|=5\) ; \(\qquad |\sqrt2|=\sqrt2\) . \(\bullet\) Jeśli \(a\) jest liczbą ujemną, to \(|a|=-a\) .
Przykład: \(|-5|=-(-5)=5\) ; \(\qquad |-\sqrt3|=-(-\sqrt3)=\sqrt3\).
Mówią, że dla liczb ujemnych moduł „zjada” minus, natomiast liczby dodatnie, a także liczba \(0\) moduł pozostawia niezmieniony.
ALE Ta zasada dotyczy tylko liczb. Jeśli pod Twoim znakiem modułu znajduje się niewiadoma \(x\) (lub inna niewiadoma), na przykład \(|x|\) , o której nie wiemy, czy jest dodatnia, zerowa czy ujemna, to pozbądź się modułu nie możemy. W tym przypadku to wyrażenie pozostaje takie samo: \(|x|\) . \(\bullet\) Obowiązują następujące formuły: \[(\large(\sqrt(a^2)=|a|))\] \[(\large((\sqrt(a))^2=a)), \text(pod warunkiem ) a\geqslant 0\] Bardzo często popełniany jest następujący błąd: mówią, że \(\sqrt(a^2)\) i \((\sqrt a)^2\) to jedno i to samo. Dzieje się tak tylko wtedy, gdy \(a\) jest liczbą dodatnią lub zerem. Ale jeśli \(a\) jest liczbą ujemną, to jest to fałsz. Wystarczy rozważyć ten przykład. Weźmy zamiast \(a\) liczbę \(-1\) . Wtedy \(\sqrt((-1)^2)=\sqrt(1)=1\) , ale wyrażenie \((\sqrt (-1))^2\) w ogóle nie istnieje (w końcu nie można użyć znaku pierwiastka wstawiając liczby ujemne!).
Dlatego zwracamy uwagę na fakt, że \(\sqrt(a^2)\) nie jest równe \((\sqrt a)^2\) ! Przykład 1) \(\sqrt(\left(-\sqrt2\right)^2)=|-\sqrt2|=\sqrt2\), ponieważ \(-\sqrt2<0\) ;

\(\phantom(00000)\) 2) \((\sqrt(2))^2=2\) . \(\bullet\) Ponieważ \(\sqrt(a^2)=|a|\) , to \[\sqrt(a^(2n))=|a^n|\] (wyrażenie \(2n\) oznacza liczbę parzystą)
Oznacza to, że przy uwzględnieniu pierwiastka liczby w pewnym stopniu stopień ten zmniejsza się o połowę.
Przykład:
1) \(\sqrt(4^6)=|4^3|=4^3=64\)
2) \(\sqrt((-25)^2)=|-25|=25\) (zwróć uwagę, że jeśli moduł nie jest dostarczony, okazuje się, że pierwiastek liczby jest równy \(-25\ ) ; ale pamiętamy, że z definicji pierwiastka tak się nie dzieje: przy wyciąganiu pierwiastka powinniśmy zawsze otrzymać liczbę dodatnią lub zero)
3) \(\sqrt(x^(16))=|x^8|=x^8\) (ponieważ każda liczba do potęgi parzystej jest nieujemna)

Fakt 6.
Jak porównać dwa pierwiastki kwadratowe?
\(\bullet\) W przypadku pierwiastków kwadratowych prawdą jest: if \(\sqrt a<\sqrt b\) , то \(aPrzykład:
1) porównaj \(\sqrt(50)\) i \(6\sqrt2\) . Najpierw przekształćmy drugie wyrażenie na \(\sqrt(36)\cdot \sqrt2=\sqrt(36\cdot 2)=\sqrt(72)\). Zatem od \(50<72\) , то и \(\sqrt{50}<\sqrt{72}\) . Следовательно, \(\sqrt{50}<6\sqrt2\) .
2) Pomiędzy jakimi liczbami całkowitymi znajduje się \(\sqrt(50)\)?
Ponieważ \(\sqrt(49)=7\) , \(\sqrt(64)=8\) i \(49<50<64\) , то \(7<\sqrt{50}<8\) , то есть число \(\sqrt{50}\) находится между числами \(7\) и \(8\) .
3) Porównajmy \(\sqrt 2-1\) i \(0.5\) . Załóżmy, że \(\sqrt2-1>0.5\) : \[\begin(wyrównane) &\sqrt 2-1>0,5 \ \big| +1\quad \text((dodaj jeden do obu stron))\\ &\sqrt2>0,5+1 \ \big| \ ^2 \quad\text((podnosząc obie strony do kwadratu))\\ &2>1,5^2\\ &2>2,25 \end(wyrównane)\] Widzimy, że otrzymaliśmy błędną nierówność. Dlatego nasze założenie było błędne i \(\sqrt 2-1<0,5\) .
Należy pamiętać, że dodanie określonej liczby do obu stron nierówności nie wpływa na jej znak. Mnożenie/dzielenie obu stron nierówności przez liczbę dodatnią również nie wpływa na jej znak, natomiast mnożenie/dzielenie przez liczbę ujemną odwraca znak nierówności!
Możesz podnieść obie strony równania/nierówności TYLKO JEŚLI obie strony są nieujemne. Na przykład w nierówności z poprzedniego przykładu można podnieść obie strony do kwadratu, w nierówności \(-3<\sqrt2\) нельзя (убедитесь в этом сами)! \(\bullet\) Należy o tym pamiętać \[\begin(wyrównane) &\sqrt 2\około 1,4\\ &\sqrt 3\około 1,7 \end(wyrównane)\] Znajomość przybliżonego znaczenia tych liczb pomoże Ci przy porównywaniu liczb! \(\bullet\) Aby wydobyć pierwiastek (o ile da się go wydobyć) z jakiejś dużej liczby, której nie ma w tabeli kwadratów, należy najpierw ustalić, pomiędzy którymi „setkami” się ona znajduje, a następnie – pomiędzy którymi „ dziesiątki”, a następnie określ ostatnią cyfrę tej liczby. Pokażmy, jak to działa na przykładzie.
Weźmy \(\sqrt(28224)\) . Wiemy, że \(100^2=10\,000\), \(200^2=40\,000\) itd. Zauważ, że \(28224\) mieści się w przedziale od \(10\,000\) do \(40\,000\) . Dlatego \(\sqrt(28224)\) znajduje się pomiędzy \(100\) a \(200\) .
Ustalmy teraz, pomiędzy którymi „dziesiątkami” mieści się nasza liczba (czyli np. pomiędzy \(120\) a \(130\)). Również z tabeli kwadratów wiemy, że \(11^2=121\) , \(12^2=144\) itd., następnie \(110^2=12100\) , \(120^2=14400 \ ) , \(130^2=16900\) , \(140^2=19600\) , \(150^2=22500\) , \(160^2=25600\) , \(170^2=28900 \ ) . Widzimy więc, że \(28224\) mieści się pomiędzy \(160^2\) a \(170^2\) . Dlatego liczba \(\sqrt(28224)\) mieści się w przedziale od \(160\) do \(170\) .
Spróbujmy ustalić ostatnią cyfrę. Przypomnijmy, jakie liczby jednocyfrowe po podniesieniu do kwadratu dają na końcu \(4\)? Są to \(2^2\) i \(8^2\) . Dlatego \(\sqrt(28224)\) zakończy się liczbą 2 lub 8. Sprawdźmy to. Znajdźmy \(162^2\) i \(168^2\) :
\(162^2=162\cdot 162=26224\)
\(168^2=168\cdot 168=28224\) .
Dlatego \(\sqrt(28224)=168\) . Voila!

Aby odpowiednio rozwiązać Unified State Exam z matematyki, należy najpierw przestudiować materiał teoretyczny, który wprowadza w liczne twierdzenia, wzory, algorytmy itp. Na pierwszy rzut oka może się to wydawać dość proste. Jednak znalezienie źródła, w którym teoria do Unified State Exam z matematyki jest przedstawiona w sposób łatwy i zrozumiały dla uczniów na każdym poziomie wykształcenia, jest w rzeczywistości dość trudnym zadaniem. Podręczniki szkolne nie zawsze można mieć pod ręką. Znalezienie podstawowych wzorów do jednolitego egzaminu państwowego z matematyki może być trudne nawet w Internecie.

Dlaczego studiowanie teorii matematyki jest tak ważne nie tylko dla osób przystępujących do egzaminu Unified State Exam?

  1. Ponieważ poszerza horyzonty. Studiowanie materiału teoretycznego z matematyki jest przydatne dla każdego, kto chce uzyskać odpowiedzi na szeroki zakres pytań związanych z wiedzą o otaczającym go świecie. Wszystko w przyrodzie jest uporządkowane i ma jasną logikę. To właśnie znajduje odzwierciedlenie w nauce, dzięki której można zrozumieć świat.
  2. Ponieważ rozwija inteligencję. Studiując materiały referencyjne do jednolitego egzaminu państwowego z matematyki, a także rozwiązując różne problemy, osoba uczy się myśleć i rozumować logicznie, kompetentnie i jasno formułować myśli. Rozwija umiejętność analizowania, uogólniania i wyciągania wniosków.

Zapraszamy do osobistej oceny wszystkich zalet naszego podejścia do systematyzacji i prezentacji materiałów edukacyjnych.

Dość często przy rozwiązywaniu problemów mamy do czynienia z dużymi liczbami, z których musimy wyodrębnić Pierwiastek kwadratowy. Wielu uczniów uznaje, że jest to błąd i zaczyna od nowa rozwiązywać cały przykład. W żadnym wypadku nie powinieneś tego robić! Są ku temu dwa powody:

  1. Pierwiastki dużych liczb rzeczywiście pojawiają się w problemach. Zwłaszcza w tekstach;
  2. Istnieje algorytm, dzięki któremu te pierwiastki są obliczane niemal ustnie.

Rozważymy ten algorytm dzisiaj. Być może niektóre rzeczy będą wydawać Ci się niezrozumiałe. Ale jeśli zwrócisz uwagę na tę lekcję, otrzymasz potężną broń przeciwko pierwiastki kwadratowe.

Zatem algorytm:

  1. Ogranicz wymagany pierwiastek powyżej i poniżej do liczb będących wielokrotnościami 10. W ten sposób zmniejszymy zakres wyszukiwania do 10 liczb;
  2. Z tych 10 liczb odrzuć te, które zdecydowanie nie mogą być pierwiastkami. W rezultacie pozostaną 1-2 liczby;
  3. Podnieś do kwadratu te liczby 1-2. Pierwiastkiem będzie ten, którego kwadrat jest równy pierwotnej liczbie.

Zanim zastosujemy ten algorytm w praktyce, przyjrzyjmy się każdemu krokowi z osobna.

Ograniczenie korzeni

Przede wszystkim musimy dowiedzieć się, pomiędzy którymi liczbami znajduje się nasz pierwiastek. Jest wysoce pożądane, aby liczby były wielokrotnościami dziesięciu:

10 2 = 100;
20 2 = 400;
30 2 = 900;
40 2 = 1600;
...
90 2 = 8100;
100 2 = 10 000.

Otrzymujemy ciąg liczb:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

Co nam mówią te liczby? To proste: wyznaczamy granice. Weźmy na przykład liczbę 1296. Leży ona pomiędzy 900 a 1600. Zatem jej pierwiastek nie może być mniejszy niż 30 i większy niż 40:

[Podpis do zdjęcia]

To samo dotyczy każdej innej liczby, z której można znaleźć pierwiastek kwadratowy. Na przykład 3364:

[Podpis do zdjęcia]

Tym samym zamiast niezrozumiałej liczby otrzymujemy bardzo konkretny zakres, w którym leży pierwiastek pierwotny. Aby jeszcze bardziej zawęzić obszar poszukiwań, przejdź do kroku drugiego.

Eliminowanie oczywiście niepotrzebnych liczb

Mamy więc 10 liczb - kandydatów na pierwiastek. Dostaliśmy je bardzo szybko, bez skomplikowanego myślenia i mnożenia w kolumnie. Czas iść dalej.

Wierzcie lub nie, ale teraz zmniejszymy liczbę numerów kandydatów do dwóch - znowu bez żadnych skomplikowanych obliczeń! Wystarczy znać specjalną zasadę. Oto ona:

Ostatnia cyfra kwadratu zależy tylko od ostatniej cyfry oryginalny numer.

Innymi słowy, wystarczy spojrzeć na ostatnią cyfrę kwadratu i od razu zrozumiemy, gdzie kończy się pierwotna liczba.

Na ostatnim miejscu może zająć tylko 10 cyfr. Spróbujmy dowiedzieć się, w co zamieniają się po podniesieniu do kwadratu. Spójrz na tabelę:

1 2 3 4 5 6 7 8 9 0
1 4 9 6 5 6 9 4 1 0

Ta tabela to kolejny krok w kierunku obliczenia pierwiastka. Jak widać liczby w drugiej linii okazały się symetryczne względem piątki. Na przykład:

2 2 = 4;
8 2 = 64 → 4.

Jak widać, ostatnia cyfra jest taka sama w obu przypadkach. Oznacza to, że np. pierwiastek 3364 musi kończyć się na 2 lub 8. Z drugiej strony pamiętamy o ograniczeniu z poprzedniego akapitu. Otrzymujemy:

[Podpis do zdjęcia]

Czerwone kwadraty wskazują, że nie znamy jeszcze tej liczby. Ale pierwiastek leży w przedziale od 50 do 60, w którym znajdują się tylko dwie liczby kończące się na 2 i 8:

[Podpis do zdjęcia]

To wszystko! Ze wszystkich możliwych korzeni pozostawiliśmy tylko dwie opcje! I to w najtrudniejszym przypadku, bo ostatnią cyfrą może być 5 lub 0. I wtedy będzie tylko jeden kandydat na pierwiastki!

Ostateczne obliczenia

Mamy zatem 2 numery kandydatów. Skąd wiesz, który z nich jest korzeniem? Odpowiedź jest oczywista: podnieś obie liczby do kwadratu. Pierwiastkiem będzie ta, która zostanie podniesiona do kwadratu i da pierwotną liczbę.

Na przykład dla liczby 3364 znaleźliśmy dwie liczby kandydujące: 52 i 58. Podnieśmy je do kwadratu:

52 2 = (50 +2) 2 = 2500 + 2 50 2 + 4 = 2704;
58 2 = (60 - 2) 2 = 3600 - 2 60 2 + 4 = 3364.

To wszystko! Okazało się, że pierwiastek wynosi 58! Jednocześnie dla uproszczenia obliczeń skorzystałem ze wzoru na kwadraty sumy i różnicy. Dzięki temu nie musiałem nawet mnożyć liczb w kolumnie! To kolejny poziom optymalizacji obliczeń, ale oczywiście jest on całkowicie opcjonalny :)

Przykłady obliczania pierwiastków

Teoria oczywiście jest dobra. Ale sprawdźmy to w praktyce.

[Podpis do zdjęcia]

Najpierw dowiedzmy się, pomiędzy którymi liczbami leży liczba 576:

400 < 576 < 900
20 2 < 576 < 30 2

Spójrzmy teraz na ostatnią liczbę. Jest równa 6. Kiedy to się dzieje? Tylko jeśli pierwiastek kończy się na 4 lub 6. Otrzymujemy dwie liczby:

Pozostaje tylko podnieść każdą liczbę do kwadratu i porównać ją z oryginałem:

24 2 = (20 + 4) 2 = 576

Świetnie! Pierwszy kwadrat okazał się równy pierwotnej liczbie. Więc to jest korzeń.

Zadanie. Oblicz pierwiastek kwadratowy:

[Podpis do zdjęcia]

900 < 1369 < 1600;
30 2 < 1369 < 40 2;

Spójrzmy na ostatnią cyfrę:

1369 → 9;
33; 37.

Kwadrat:

33 2 = (30 + 3) 2 = 900 + 2 30 3 + 9 = 1089 ≠ 1369;
37 2 = (40 - 3) 2 = 1600 - 2 40 3 + 9 = 1369.

Oto odpowiedź: 37.

Zadanie. Oblicz pierwiastek kwadratowy:

[Podpis do zdjęcia]

Ograniczamy liczbę:

2500 < 2704 < 3600;
50 2 < 2704 < 60 2;

Spójrzmy na ostatnią cyfrę:

2704 → 4;
52; 58.

Kwadrat:

52 2 = (50 + 2) 2 = 2500 + 2 50 2 + 4 = 2704;

Otrzymaliśmy odpowiedź: 52. Drugiej liczby nie trzeba już podnosić do kwadratu.

Zadanie. Oblicz pierwiastek kwadratowy:

[Podpis do zdjęcia]

Ograniczamy liczbę:

3600 < 4225 < 4900;
60 2 < 4225 < 70 2;

Spójrzmy na ostatnią cyfrę:

4225 → 5;
65.

Jak widać, po drugim kroku pozostała tylko jedna opcja: 65. To jest pożądany korzeń. Ale spójrzmy jeszcze raz i sprawdźmy:

65 2 = (60 + 5) 2 = 3600 + 2 60 5 + 25 = 4225;

Wszystko jest poprawne. Zapisujemy odpowiedź.

Wniosek

Niestety, nie lepiej. Spójrzmy na przyczyny. Są dwa z nich:

  • Na każdym normalnym egzaminie z matematyki, czy to na egzaminie państwowym, czy na egzaminie jednolitym, używanie kalkulatorów jest zabronione. A jeśli przyniesiesz na zajęcia kalkulator, możesz łatwo zostać wyrzucony z egzaminu.
  • Nie bądź jak głupi Amerykanie. Które nie są jak pierwiastki - nie mogą dodać dwóch liczb pierwszych. A kiedy widzą ułamki, zazwyczaj wpadają w histerię.

Przed pojawieniem się kalkulatorów uczniowie i nauczyciele obliczali pierwiastki kwadratowe ręcznie. Istnieje kilka sposobów ręcznego obliczania pierwiastka kwadratowego z liczby. Niektóre z nich oferują jedynie przybliżone rozwiązanie, inne dają dokładną odpowiedź.

Kroki

Faktoryzacja pierwsza

    Rozłóż liczbę pierwiastkową na czynniki będące liczbami kwadratowymi. W zależności od liczby radykalnej otrzymasz odpowiedź przybliżoną lub dokładną. Liczby kwadratowe to liczby, z których można wyciągnąć cały pierwiastek kwadratowy. Czynniki to liczby, które po pomnożeniu dają liczbę pierwotną. Na przykład współczynniki liczby 8 to 2 i 4, ponieważ 2 x 4 = 8, liczby 25, 36, 49 są liczbami kwadratowymi, ponieważ √25 = 5, √36 = 6, √49 = 7. Czynniki kwadratowe są czynnikami, które są liczbami kwadratowymi. Najpierw spróbuj rozłożyć liczbę pierwiastkową na czynniki kwadratowe.

    • Na przykład oblicz pierwiastek kwadratowy z 400 (ręcznie). Najpierw spróbuj rozłożyć 400 na czynniki kwadratowe. 400 to wielokrotność 100, czyli podzielna przez 25 - jest to liczba kwadratowa. Dzielenie 400 przez 25 daje 16. Liczba 16 jest również liczbą kwadratową. Zatem 400 można rozłożyć na współczynniki kwadratowe 25 i 16, czyli 25 x 16 = 400.
    • Można to zapisać w następujący sposób: √400 = √(25 x 16).
  1. Pierwiastek kwadratowy iloczynu niektórych wyrazów jest równy iloczynowi pierwiastków kwadratowych każdego wyrazu, czyli √(a x b) = √a x √b. Użyj tej reguły, aby obliczyć pierwiastek kwadratowy z każdego współczynnika kwadratowego i pomnożyć wyniki, aby znaleźć odpowiedź.

    • W naszym przykładzie weź pierwiastek z 25 i 16.
      • √(25 x 16)
      • √25 x √16
      • 5x4 = 20
  2. Jeśli liczba pierwiastkowa nie zostanie rozłożona na dwa współczynniki kwadratowe (a tak się dzieje w większości przypadków), nie będziesz w stanie znaleźć dokładnej odpowiedzi w postaci liczby całkowitej. Ale można uprościć problem, rozkładając liczbę pierwiastkową na współczynnik kwadratowy i zwykły czynnik (liczbę, z której nie można wyciągnąć całego pierwiastka kwadratowego). Następnie weźmiesz pierwiastek kwadratowy ze współczynnika kwadratowego i wyciągniesz pierwiastek ze wspólnego czynnika.

    • Na przykład oblicz pierwiastek kwadratowy z liczby 147. Liczby 147 nie można rozłożyć na dwa współczynniki kwadratowe, ale można ją rozłożyć na następujące czynniki: 49 i 3. Rozwiąż problem w następujący sposób:
      • = √(49 x 3)
      • = √49 x √3
      • = 7√3
  3. Jeśli to konieczne, oszacuj wartość pierwiastka. Teraz możesz oszacować wartość pierwiastka (znaleźć wartość przybliżoną), porównując ją z wartościami pierwiastków liczb kwadratowych, które są najbliżej (po obu stronach osi liczbowej) liczby pierwiastkowej. Wartość pierwiastkową otrzymasz w postaci ułamka dziesiętnego, który należy pomnożyć przez liczbę znajdującą się za znakiem pierwiastka.

    • Wróćmy do naszego przykładu. Pierwiastkiem jest liczba 3. Najbliższe jej liczby kwadratowe to liczby 1 (√1 = 1) i 4 (√4 = 2). Zatem wartość √3 mieści się pomiędzy 1 a 2. Ponieważ wartość √3 jest prawdopodobnie bliższa 2 niż 1, nasze oszacowanie wynosi: √3 = 1,7. Mnożymy tę wartość przez liczbę przy znaku pierwiastka: 7 x 1,7 = 11,9. Jeśli wykonasz obliczenia na kalkulatorze, otrzymasz 12,13, co jest dość bliskie naszej odpowiedzi.
      • Ta metoda działa również w przypadku dużych liczb. Rozważmy na przykład √35. Pierwiastkiem jest liczba 35. Najbliższe jej liczby kwadratowe to liczby 25 (√25 = 5) i 36 (√36 = 6). Zatem wartość √35 mieści się pomiędzy 5 a 6. Ponieważ wartość √35 jest znacznie bliższa 6 niż 5 (ponieważ 35 to tylko 1 mniej niż 36), możemy powiedzieć, że √35 jest nieco mniejsze niż 6 Sprawdź na kalkulatorze, co daje nam odpowiedź 5,92 – mieliśmy rację.
  4. Innym sposobem jest rozłożenie liczby pierwiastkowej na czynniki pierwsze. Czynniki pierwsze to liczby, które dzielą się tylko przez 1 i samą siebie. Zapisz czynniki pierwsze w szeregu i znajdź pary identycznych czynników. Takie czynniki można wyjąć ze znaku głównego.

    • Na przykład oblicz pierwiastek kwadratowy z 45. Rozłóż liczbę pierwiastkową na czynniki pierwsze: 45 = 9 x 5 i 9 = 3 x 3. Zatem √45 = √(3 x 3 x 5). Jako pierwiastek można wyjąć 3: √45 = 3√5. Teraz możemy oszacować √5.
    • Spójrzmy na inny przykład: √88.
      • = √(2 x 44)
      • = √ (2 x 4 x 11)
      • = √ (2 x 2 x 2 x 11). Otrzymałeś trzy mnożniki liczby 2; weź kilka z nich i przesuń je poza znak korzenia.
      • = 2√(2 x 11) = 2√2 x √11. Teraz możesz ocenić √2 i √11 i znaleźć przybliżoną odpowiedź.

    Ręczne obliczanie pierwiastka kwadratowego

    Używanie długiego dzielenia

    1. Ta metoda obejmuje proces podobny do dzielenia długich i zapewnia dokładną odpowiedź. Najpierw narysuj pionową linię dzielącą arkusz na dwie połowy, a następnie w prawo i nieco poniżej górnej krawędzi arkusza narysuj poziomą linię do linii pionowej. Teraz podziel liczbę pierwiastkową na pary liczb, zaczynając od części ułamkowej po przecinku. Tak więc liczba 79520789182.47897 jest zapisana jako „7 95 20 78 91 82, 47 89 70”.

      • Na przykład obliczmy pierwiastek kwadratowy z liczby 780,14. Narysuj dwie linie (jak pokazano na rysunku) i wpisz podaną liczbę w postaci „7 80, 14” w lewym górnym rogu. To normalne, że pierwsza cyfra od lewej jest cyfrą niesparowaną. Odpowiedź (pierwiastek tej liczby) napiszesz w prawym górnym rogu.
    2. Dla pierwszej pary liczb (lub pojedynczej liczby) od lewej strony znajdź największą liczbę całkowitą n, której kwadrat jest mniejszy lub równy danej parze liczb (lub pojedynczej liczbie). Innymi słowy, znajdź liczbę kwadratową najbliższą pierwszej parze liczb (lub pojedynczej liczbie) od lewej, ale mniejszą od niej, i weź pierwiastek kwadratowy z tej liczby kwadratowej; otrzymasz liczbę n. Wpisz n, które znalazłeś, w prawym górnym rogu i wpisz kwadrat n w prawym dolnym rogu.

      • W naszym przypadku pierwszą liczbą po lewej będzie 7. Następnie 4< 7, то есть 2 2 < 7 и n = 2. Напишите 2 сверху справа - это первая цифра в искомом квадратном корне. Напишите 2×2=4 справа снизу; вам понадобится это число для последующих вычислений.
    3. Odejmij kwadrat liczby n, którą właśnie znalazłeś, od pierwszej pary liczb (lub pojedynczej liczby) po lewej stronie. Wynik obliczeń zapisz pod odejmowaniem (kwadratem liczby n).

      • W naszym przykładzie odejmij 4 od 7 i uzyskaj 3.
    4. Zapisz drugą parę liczb i zapisz ją obok wartości uzyskanej w poprzednim kroku. Następnie podwoj liczbę w prawym górnym rogu i zapisz wynik w prawym dolnym rogu z dodatkiem „_×_=".

      • W naszym przykładzie druga para liczb to „80”. Wpisz „80” po 3. Następnie podwojenie liczby w prawym górnym rogu daje 4. Wpisz „4_×_=" w prawym dolnym rogu.
    5. Wypełnij puste pola po prawej stronie.

      • W naszym przypadku, jeśli zamiast myślników wstawimy liczbę 8, to 48 x 8 = 384, czyli więcej niż 380. Zatem 8 to za duża liczba, ale wystarczy 7. Zamiast myślników wpisz 7 i uzyskaj: 47 x 7 = 329. Wpisz 7 w prawym górnym rogu - jest to druga cyfra żądanego pierwiastka kwadratowego z liczby 780,14.
    6. Odejmij wynikową liczbę od bieżącej liczby po lewej stronie. Wynik z poprzedniego kroku zapisz pod aktualną liczbą po lewej stronie, znajdź różnicę i zapisz ją pod odjemnikiem.

      • W naszym przykładzie odejmij 329 od 380, co równa się 51.
    7. Powtórz krok 4. Jeżeli przenoszona para liczb jest częścią ułamkową pierwotnej liczby, należy umieścić separator (przecinek) pomiędzy liczbą całkowitą a częścią ułamkową w wymaganym pierwiastku kwadratowym w prawym górnym rogu. Po lewej stronie obniż następną parę liczb. Podwój liczbę w prawym górnym rogu i zapisz wynik w prawym dolnym rogu z dodatkiem „_×_=".

      • W naszym przykładzie następną parą liczb do usunięcia będzie część ułamkowa liczby 780,14, dlatego umieść separator części całkowitej i ułamkowej w żądanym pierwiastku kwadratowym w prawym górnym rogu. Zapisz liczbę 14 i wpisz ją w lewym dolnym rogu. Podwójna liczba w prawym górnym rogu (27) to 54, więc wpisz „54_×_=" w prawym dolnym rogu.
    8. Powtórz kroki 5 i 6. Znajdź największą liczbę w miejsce kresek po prawej stronie (zamiast kresek należy podstawić tę samą liczbę), aby wynik mnożenia był mniejszy lub równy bieżącej liczbie po lewej stronie.

      • W naszym przykładzie 549 x 9 = 4941, czyli mniej niż bieżąca liczba po lewej stronie (5114). Wpisz 9 w prawym górnym rogu i odejmij wynik mnożenia od bieżącej liczby po lewej stronie: 5114 - 4941 = 173.
    9. Jeśli chcesz znaleźć więcej miejsc po przecinku dla pierwiastka kwadratowego, wpisz kilka zer na lewo od bieżącej liczby i powtórz kroki 4, 5 i 6. Powtarzaj kroki, aż uzyskasz dokładność odpowiedzi (liczbę miejsc po przecinku) potrzebować.

    Zrozumienie procesu

      Aby opanować tę metodę, wyobraź sobie liczbę, której pierwiastek kwadratowy musisz znaleźć jako obszar kwadratu S. W tym przypadku będziesz szukać długości boku L takiego kwadratu. Obliczamy wartość L w taki sposób, że L² = S.

      Podaj literę do każdej cyfry w odpowiedzi. Oznaczmy przez A pierwszą cyfrę wartości L (pożądany pierwiastek kwadratowy). B będzie drugą cyfrą, C trzecią i tak dalej.

      Określ literę dla każdej pary pierwszych cyfr. Oznaczmy przez S a pierwszą parę cyfr wartości S, przez S b drugą parę cyfr i tak dalej.

      Zrozum związek między tą metodą a długim dzieleniem. Podobnie jak przy dzieleniu, gdzie za każdym razem interesuje nas tylko kolejna cyfra liczby, którą dzielimy, tak przy obliczaniu pierwiastka kwadratowego pracujemy kolejno przez parę cyfr (aby otrzymać kolejną cyfrę wartości pierwiastka kwadratowego) .

    1. Rozważmy pierwszą parę cyfr Sa liczby S (w naszym przykładzie Sa = 7) i znajdź jej pierwiastek kwadratowy. W tym przypadku pierwszą cyfrą A żądanej wartości pierwiastka kwadratowego będzie cyfra, której kwadrat jest mniejszy lub równy S a (to znaczy szukamy takiego A, że nierówność A² ≤ Sa< (A+1)²). В нашем примере, S1 = 7, и 2² ≤ 7 < 3²; таким образом A = 2.

      • Powiedzmy, że musimy podzielić 88962 przez 7; tutaj pierwszy krok będzie podobny: rozważamy pierwszą cyfrę liczby podzielnej 88962 (8) i wybieramy największą liczbę, która pomnożona przez 7 daje wartość mniejszą lub równą 8. Oznacza to, że szukamy liczba d, dla której prawdziwa jest nierówność: 7 × d ≤ 8< 7×(d+1). В этом случае d будет равно 1.
    2. W myślach wyobraź sobie kwadrat, którego powierzchnię musisz obliczyć. Szukasz L, czyli długości boku kwadratu, którego pole jest równe S. A, B, C to liczby w liczbie L. Można to zapisać inaczej: 10A + B = L (dla liczba dwucyfrowa) lub 100A + 10B + C = L (dla liczby trzycyfrowej) i tak dalej.

      • Pozwalać (10A+B)² = L² = S = 100A² + 2×10A×B + B². Pamiętaj, że 10A+B to liczba, w której cyfra B oznacza jednostki, a cyfra A dziesiątki. Na przykład, jeśli A=1 i B=2, wówczas 10A+B równa się liczbie 12. (10A+B)² to pole całego kwadratu, 100A²- powierzchnia dużego placu wewnętrznego, - powierzchnia małego wewnętrznego placu, 10A×B- powierzchnia każdego z dwóch prostokątów. Dodając pola opisanych figur, znajdziesz pole pierwotnego kwadratu.